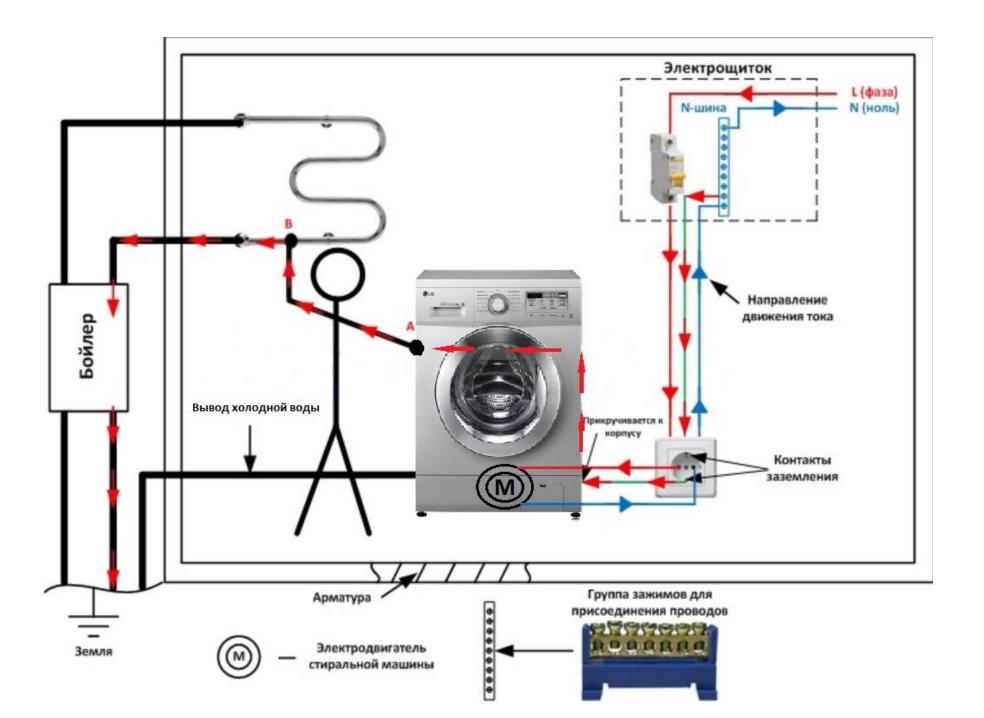
Зачем нужна и как обустраивается система уравнивания потенциалов?

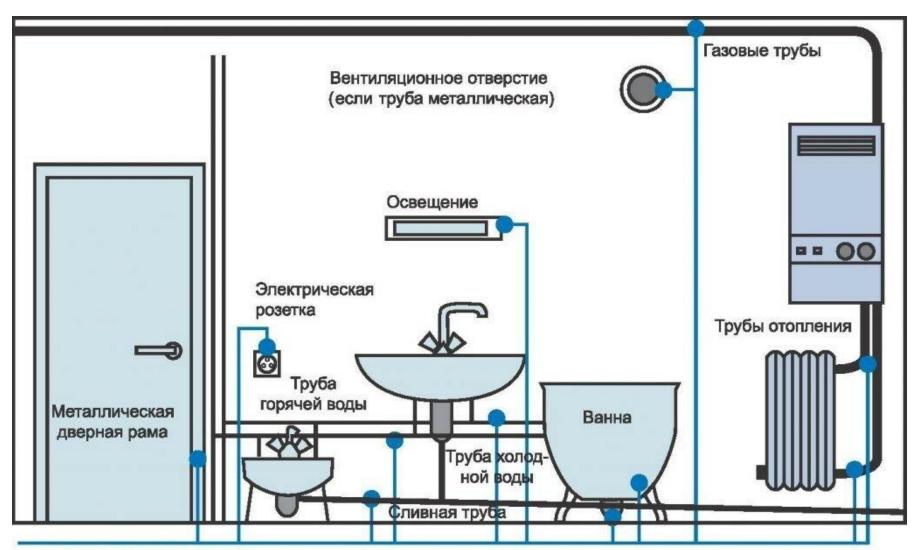
В соответствие с **требованиями ПУЭ** (смотрите п. 1.7.82) все металлические и электропроводящие части оборудования на любом объекте обязательно соединяются между собой. Благодаря этому они образуют так называемую «основную» схему уравнивания потенциалов, соединяемую с имеющимся на стороне потребителя заземлением. Для понимания принципа действия всей системы сначала потребуется разобраться с тем, каково ее непосредственное назначение.

Назначение системы и ее виды


На любом жилом объекте расположено множество металлических предметов и конструкций, являющихся хорошими проводниками электричества.

Это:

- Проложенные в квартире отопительные трубы.
- Стальные короба шахт вентиляции.
- Вспомогательное оборудование ванных комнат.
- Трубы водоснабжения и канализации.

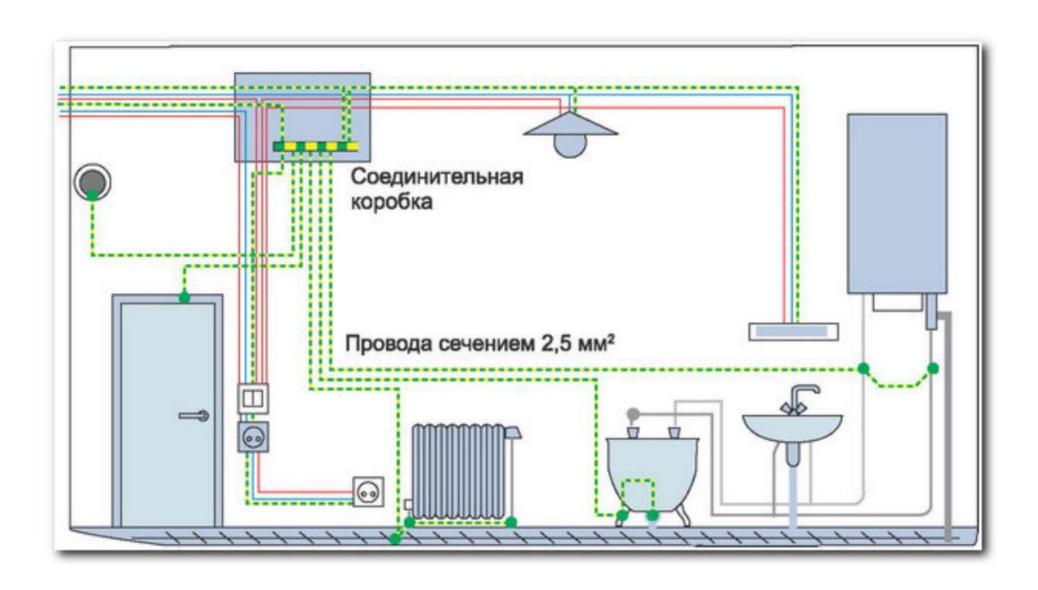

Важно! Из-за особенностей расположения в пределах квартиры или дома чаще всего все эти элементы не имеют надежной электрической связи.

По причине различных переходных сопротивлений в заземляющих контактах точки соединения (а, следовательно – и корпуса) могут иметь разный потенциал. В определенных условиях величина этой разницы достигает опасных для человека значений (25-50 Вольт). Это хорошо видно из следующего далее по тексту рисунка.

Чтобы устранить это различие и исключить вероятность поражения током жильцов дома — в нем организуется система уравнивания потенциалов. Для этого в пределах квартиры все корпуса оборудования, трубы, а также стальные двери и элементы отопительной системы объединяются в единую цепь.

Делается это с той целью, чтобы впоследствии подсоединить к действующему контуру заземления. Только так удается уровнять потенциалы, появляющиеся на различных элементах бытового оборудования (фото ниже).

Провод выравнивания потенциалов


Виды систем уравнивания

Известны две разновидности уравнивающих систем, одна из которых называется основной (ОСУП), а вторая – дополнительной (ДСУ).

Последняя не сможет функционировать без исправно действующей основной системы, которая должна соответствовать следующим требованиям:

- Начиная ГЗШ в распределительном шкафу, при ее обустройстве запрещено объединять РЕ и N проводники.
- Для всех конструкций, которые полагается заземлять, выбирается только радиальная схема подключения к заземляющему контуру.
- В цепях защитного заземления не допускается устанавливать отдельные коммутационные приборы.

В отличие от ОСУП ДСУ объединяет проводящие части электрооборудования, расстояние между которыми настолько велико, что в них может образоваться опасная разность потенциалов. А также существует вероятность того, что к ним можно случайно прикоснуться одновременно (двумя руками, например). К этим же элементам относят стальные части проложенных в земле и наземных конструкций, а также нулевые защитные проводники (фото ниже).

Особенности обустройства

Поскольку каждый из металлических предметов может быть заземлен посредством общего защитного контура, то основная задача уравнивания – соединить все элементы конструкций и корпуса приборов в одной точке.

При ее выборе обязательно учитываются следующие моменты:

- для этих целей должны применяться не изолированные медные шины сечением не менее 6-ти мм квадратных;
- место их сборки выбирается с тем расчетом, чтобы длина шин при радиальной разводке была минимальной;
- точку отвода в сторону заземляющего контура выбирается с учетом тех же соображений.

Также учитывается требование, запрещающее использовать любые соединения шлейфом и разрывы проводников, идущих к заземляющему контуру.